Satellite-based Global Lightning and Severe Storm Monitoring Using VHF Receivers

D. Suszcynsky, A. Jacobson, J. Fitzgerald, C. Rhodes, E. Tech, D. Roussel-Dupre

Los Alamos National Laboratory Space & Atmospheric Sciences Group, NIS-1 dsuszcynsky@lanl.gov 505-665-3119

FORTE Science/Operations Team V-Sensor Development Team

> AGU Fall 2000 Meeting December 16, 2000

VHF vs. Optical Lightning Detection

	OPTICAL	VHF	
Detects:	Light (current)	VHF (changes in current)	
Geolocation Technique / Min. # of satellites:	CCD array/ 1	Time-of-arrival (TOA)/	
Atmospheric Effects:	Scattering/ attenuation	none	
Ionospheric Effects:	none	Frequency-dependent dispersion (can be mitigated)	
Lightning Taxonomy:	Cannot distinguish	Can distinguish CG vs. IC, return strokes, leaders, TIPPs, etc.	

FORTE: Fast On-Orbit Recording of Transient Events

MISSION

- Testbed for Next Generation Nuclear EMP Sensor Technology.
- Space-based Lightning Detection.

PLATFORM

Altitude: ~ 825 km Inclination: 70 degrees

Launched: August 29, 1997

SENSORS

Type: Broadband VHF receivers

-(26-300 MHz)

- 1 µs or better resolution

Photodiode (PDD) -15 µS resolution

CCD Imager (LLS)

-10 km location accuracy

Data: Optical/VHF Waveforms

Event location

Automated Lightning Classification

Spectrogram	Power profile	Taxonomy	Features
		1st -RS w/stepped 1eader	width > 400 μS, steady in crease, impulse at attachment
		SubseqRS w/dart1eader	10μS < wid. < 500 μS sharp fall, impulse at attachment
NACTOR STATE OF STATE		1st +RS	10μS < wid. < 500 μS sharp rise, impulse at attachment
		Impulsive in-cloud events, including TIPPS	1 μS < width < 10 μS strong
		Non-impulsive in-cloud events including K-events	10 μS < wid. < 500 μS slow rise/fall
		Mixed impulsive and non-impulsive in-cloud events	Mixed of impulsive and non-impulsive features

/r/projects/sat/idligno/19980515.pnd 0:54 50.016 - 20:31:18.589 284 +/-0.0m% doings

Utility of a Global Lightning Monitor

- 1.) Severe Storm forecasting/warning
 - improve severe storm identification/tracking (especially over regions lacking sufficient ground radar coverage, e.g. oceans)
 - improve NWS severe storm warning capability
 - flash rate related to updraft velocity, cloud-top height, stage of storm development, general cloud structure
 - improve forest fire prediction capability
- 2.) Aviation
 - support military operations
 - increase safety/efficiency of commercial air travel via flight path optimization
- 3.) Global Electrical Circuit
 - quantify lightning contribution

Utility of a Global Lightning Monitor

- 4.) Global climatology/meteorology
 - Lightning as a proxy for:
 - quantifying deep convective processes
 - quantifying global rainfall rates for certain types of storms
 - use above as input into General Circulation Models (GCMs)
 - global lightning occurrence as an indicator of global/regional climate change (e.g. ENSO)
 - NO_x production

GPS Block IIF: V-Sensor (BDV)

MISSION

Space-based EMP monitoring of nuclear detonations for treaty verification

PLATFORM

Platform: GPS Constellation

(24 Block IIF satellites)

Altitude: 20,000 km Launches: 2005-2010

SENSORS

Type: Broadband VHF receivers

(low/mid VHF)

Data: Waveforms

Event time Event location

NAP/S2_DOWNLINK

Data Rate: dump once/day/satellite

Gnd. stations: 1*
Onboard memory: 4 MB
Net events/day/sat ~1000

*Possibility of more gnd stations (i.e. more events/day/sat)

VHF Global Lightning and Severe Storm Monitor (V-GLASS)

Platform: 24 GPS satellites @ 20,000 km altitude

Phenomenology: Low/mid VHF

Ground Stations: 2-3

Reportable Event Rate: ~ 10 /sec/satellite (working to increase)

Data products: Geolocation with excellent resolution

Event time

Some waveforms

On-board lightning-type ID (future?)

V-GLASS Status

- First draft of Concept Definition completed
- Integrating V-GLASS event capture/reporting algorithm into V-Sensor design
- Trying to develop community advocacy/ identify funding for a formal program
 - additional ground stations
 - develop data products/distribution network